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MULTIPLE SCATTERING FROM NONSPHERICAL TARGETS

S1. INTRODUCTION

In this report the development of a new extension of Shifrin's scheme for calculating the scattering

by non-spherical, non-symmetric particles is documented and several applications presented. In

addition we have developed a technique for properly computing the scattering of linearly polarized light

by randomly oriented infinite cylinders, as well as finite cylinders and spheroids and we have applied

this technique to several examples.

The new extension of Shifrin's method involves taking targets of arbitrary shape, but whose local

cross section is circular, and breaking the target into a series of stacked disks. This particular approach

permits the computation of scattering from such targets as helices, wavy cylinders, cylinders whose

radii vary, and toroids, to cite a few. This new technique has been tested against an experiment

conducted by Dr. Ru Wang of the University of Florida at Gainsville on scattering of microwave

radiation by a dielectric helix. The comparison between the experiment and our calculated scattering

patterns are included in this report and show good agreement.

We have also computed asymmetry factors for the scattering of polarized light from randomly

-, oriented infinite cylinders. This problem required special care due to the peculiar scattering

% characteristics of very long cylinders. The results of this calculation are useful in computing the average

*: amount of light scattered in the forward direction from a collection of randomly oriented cylinders such

as a cloud of cylinders or randomly oriented fibers as used in insulation materials.

'"' 2. ASYMMETRY FACTORS FOR THE SCATTERING OF POLARIZED LIGHT FROM

RANDOMLY ORIENTED INFINITE CYLINDERS,,'

This computation is applicable to the scattering of light from fibrous media such as is used in

construction and other applications. These fibers are characterized by a large aspect ratio (fiber length/

fiber diameter). We have recently shown 1 ,2 that for finite fibers with aspect ratios as small as 100, the

theory for infinite cylinders gives highly accurate results. The second of the above references is a

comparison between theory and an experiment.

In studying the passage of radiation through fibrous media, the main optical parameter is the ratio of

the amount of radiative power scattered in the forward direction to the power scattered in all

directions. In the case of spherical particles, this is called the asymmetry factor p, and for spheres

larger than the wavelength of light (the size parameter x=2ita!L is greater than unity) it is given by

" :p(x) =fl01I( .,x,m) dp / f-1l1 I( .,x,m) d . > 1/2 (1)

where .i = cos 0, with 0 the scattering angle, and m is the refractive index.

For infinite cylinders, equation (1) must be modified to take into account the unique geometry for

scattering from a sphere. Figure 1 shows this geometry, where the incident light is along the z axis,

'4 and the target axis is zt. The scattered direction is z', and the direction of incident linear polarization

', *17



Z( incident)

. .(scaterec

-by

NI

Figure 1. The geometry for the scattering process. The light is incident along the z axis and polarized

along the x axis. The light is then scattered along the z' axis, and 200 is the angle between the incident

and scattered directions. The cylinder axis is denoted zc. and it s orientation angles with respect to xyz

are 0 (tilt angle) and y ( a7imuthal angle).
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defines the x axis. The scattering angle is denoted 200 , and the orientation of the target axis is

specified relative to xyz by the polar and azmuthal angles 0, -Y .

For the scattering of light from an infinite cylinder, the scattering pattern is a cone with apex at the

origin and symmetry axis along z' , as shown in figure 2. In this figure, the line OA is along the

direction of incidence. Any other element of the cone is a possible scattering direction. For example,

the direction OC is a scattered direction that is perpendicular to the direction of incidence. The point 0'

is at the center of the base of the cone, and the direction O'A is considered a reference for the

measurement of a different kind of scattering angle - it is denoted 8 , and it marks the angular distance

from O'A to a point where a scattered direction line intersects the base of the cone. For example, the

*angle 0C is the scattering angle for the scattered direction OC. It is shown 3,4that the equation of

constraint for infinite-cylinder scattering is given by

sin ¢ sin 0/2 = sin 0o (2)

The scattering angle 0 for scattering in the plane perpendicular to the cattered direction is then given

by (00 = 450)

OA = 12 sin "1 [1/N2 sin ¢II. (3)

We can now properly define the asymmetry factor for scattering from an infinite cylinder:

p(0,Y) = -o°E (11 + 12) dO / f-tn(11 +12 ) dO (4)

In this equation 1 and 12 are the respective scattering intensities for the scattering of light respectively

parallel and perpendicular to the scattering plane ( see reference 2).

Calculations based on the above work are to be found in reference 5. The asymmetry factor of equation

(4) for the size parameter x=25 and an index of refraction m = 1.5 is plotted in figure 3 against the

orientation angle 4. The results are strikingly similar for this wide range of size parameters (0.1 to

50). Perhaps more interesting is the plot of the asymmetry factor against size parameter shown in

figure 4 where an average over all orientations is made. We see in this case that the factor seems to

converge to the value 0.813.

3. APPLICATION TO THE OPTICAL PROPERTIES OF FIBROUS INSULATION

This application is distinguished from that given in section 2 by calculation of scattering intensities

from a cloud or tenuous medium of long cylindrical fibers. Thus, we need to define the averaging

procedure, and this turns out to be complicated by the equation of constraint for the scattering of light

. from an infinite cylinder - the equation (2) of section 2.

One might think ( and previous calculations were based on this idea) that an average intensity for

%4.• "i 9



Z (incident)

A

'IC

PZ' (scattered)

Figure 2. For scattering of light from an infinite cylinder, the scattering is along the element of a cone as

showkn. The scactering angle eis measured on the base of the cone counterclockwise from point A
(forward direction).
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Figure 3. The scattering cone for light scattering from a cylinder with tilt angle 4)> 45. The critical

scattering angles 0A and -0A are shown.
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Figure 4. The asymmetry factor averaged over all possible orientations of the scattering cylinder versus
size parameter.
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the scattering of light would be given by

lave =(1/4t 2 ) JJ I(O,y) sin 0 dO dy, (5)

where I is the scattering intensity, and O,y are the orientation angles for the cylinder axis as defined

in section 2.
The conical scattering pattern from an infinite cylinder complicates the averaging procedure - an

equation of constraint is needed. This equation can be derived noting that from first-order scattering

theory (Rayleigh-Gans), the scattering intensity from a finite cylinder of height h contains the factor

sin 2 (ph/2)/(ph/2)2

where

p=k o (ko -k') kt.

Here, ko ,k', kt are, respectively, unit vectors in the incident, scattered, and cylinder-axis

directions. As the height of the cylinder increases to infinitity, this factor vanishes unless p = 0, or

(ko - k')kt 0.

This is, in effect, the condition that must be satisfied for the scattering from an infinite cylinder to be
*, along the cone (Naturally, the exact theory for the infinite cylinder predict the conic scattering pattern

and would give rise to the same condition). Using the geometry given in figure 1, this implies that

(ko - k') kt = {ko - [COS(20 0 ) ko + sin( 200) io]}

x[sin(o) cos (y) io + sin(O) sin (y) jo + cos(o) ko ]

=0,
or

0 = tan "1 (tan(Oo)/ cos(y)) (6)
q

" We want to emphasize at this point that equation (6) was derived by us 6 and used for the purpose of

*,? summing over orientations for the first time in the literature. If we note figure 5, the orientations of the
• , cylinder axis consistent with a scattering angle of 20o and equation (6) follows a great circle path from
. point A to point B, and for a unit sphere, the length of this path is

413



INCIDENT
DIRECTION

Z
CYLINDER

SCATTERED AXIS
DIRECTION

,,/ SCATTERING

• " 0 ONE

2/ 'i .> / I' /,

- E0
X

Figure 5. The scattering geometry shown in the reference frame x,y,z, where the x-z plane is the

scattering plane. The orientation angles of the cylinder axis are 0 and y, and the polarization angle of the

linearly polarized wave E0 is (x. The scattering angle between the directions of incidence and scattering

is denoted 20. The scattering angle used in the theory for the infinite cylinder is measured in a plane

perpendicular to the cylinder axis, and it is denoted 8.
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9 I

fAB ds = J' / 2 dy sin 2 (0)/ sin(0O ) = J0 nJ2 dy /(1- coS2
0o sin 2 Y)

= ir/2.

Therefore, the average intensity for the scattering of light from a cloud of randomly

oriented long cylinders is

lave = (1/2t) J0 21 I (O(y), Y) sin 2 (0)/ sin(0o) dy (7)

The intensities to be averaged are denoted II and 12 , as already noted, and correspond to scattenng
in and normal to the scattering plane. For an infinite cylinder, these intensities are given by

11 = const. lbol + 2 Y bnI cos(nO) ] cos y*

-i [2  bnilI sin( nO)I sin y* , (8)

12 = const. laol I + 2 1 anl I cos(nO)] sin (

-i [2 Y anl sin(nO) ] cos y* (9)

where the "a" and "b" coefficients are derived in detail in reference 7.
These coefficients are dependent on the size parameter of the cylinder, the index of refraction (which

may be complex), and the tilt angle 0. The angle y*= y - a, where a is the angle that the incident

electric field makes with the scattering plane.
We have made three applications. The first is a comparison with the work of McKay et. al 8 in

which the averaging is done using equation (5) instead of equation (7). We calculate the intensities
for light of wavelength 10 microns incident on cylinders with the complex index of refraction m =
1.85 -i 0.033 and size parameter x = 7.3513. These are the values used in reference 8. The results for
I1 and 12 are shown in figure 6 for the incident light polarized in and perpendicular to the scattering
plane (a=0 and a=t/2, respectively). Also shown in figure 6 is the intensity 112 where the incident
light is polarized in the scattering plane and the scatered light is polarized perpendicular to the scattering

plane.

The salient results are:

(1) A strong forward scattering value. This is in contrast to the results of reference 8 where the
intensities go to zero in the forward direction as a result of compensating for a singularity that occurs

because of an incorrect averaging procedure.

(2) Smaller values in the region of 70 to 150 degrees of scattering.

(3) A backscatter value approximately I to 2 orders of magnitude smaller than the forward scattering
value.

(4) The number of maxima roughly equal to the value of the size parameter.

15
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>" 12
-0- 112

.t.

-2
0 100 200angle

~Figure 6. The relative intensities defined in ekquation 9 versus the scattering angle 200. The top curves

are I1 for at 0 and I2 for ot - i:/2. The bottom curve is 1, for o (x or 1, for a = /2 ). The size
parameter x =7.351 and m =1. 85 - 0,03.31i.
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C 2

4)- 1 (Stephen's)

4; 0-

0

-2

0 1 OO 200

angle

Figure 7, The relative intensities defined in equation 9 versus the scattering angle 200 for x=
17.173 and m =1.29 - 0.0954 i. a) The results of reference 3. b) our corrected results.
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C 2
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4)
> I I 1 (corrected)

0

-2
0 100 200

angle

*Figure S. The relative intensities defined in eqJIUatIo 9 versus the scattring angle 2100 for x

17.173 and m =1.29 - 0.0954 1. a) The results of referenc.e 3. b) our corrected results.
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0 100 200

angle

Figure 9. The relative intensity defined in eqluation 9 versus the scattering angle for x =45.7 and m=
1.31. The experimental results are shown by black diamonds and our theoretical results are shown by
open squares.



The second application is a comparison with the work of Stephens 9 which also used the wrong

averaging procedure to determine the effect of the scattering of thermal radiation from randomly

% ." oriented ice crystals ( which are long hexagonal prisms).

We calculate intensities for light of wavelength II microns , index m = 1.29 -i 0.0954, and size

parameter x = 17.136. The results are shown in figures 7 and 8 (ours and Stephens, respectively).

i Our results show marked differences especially at the larger scattering angles, where our results

continue to show fluctuations over the full angular range.

Finally, we make a comparison of our averaging procedure with the experimental results of

Huffman et al.10 In this experiment, visible light of wavelength 0.55 microns is incident on ice crystals

whose size parameter is x = 45.7 and m = 1.31. The results are shown in figure 9 where the

experimental points are shown as black diamonds and the theory as open squares. We see general

agreement over the whole range of the experiment (for 10 to 150 degrees). In particular, we note that

% agreement is achieved at the largest scattering angle of 150 degrees.

V' 4. THE SCAITERING OF LINEARLY POLARIZED LIGHT FROM RANDOMLY ORIENTED

SHORT CYLINDERS AND SPHEROIDS

In contrast to the first two sections, we now study the scattering of light from finite cylinders and

spheroids of the same material, equal volume, and the same aspect ratio (length/diameter). These
aspect ratios range from 10 down to 0.1. The purpose of this study is to determine if randomizing

the target orientation effectively negates the differences in shape for these targets. The iterative

approach of Shifrin and Acquista 11 , 12 is used.

The theory for the scattering of light from a finite cylinder arbitrarily oriented relative to the

incident light is given in reference I and this includes the derivation of the second-order iteration that

effectively includes the self-interaction of the various parts of the target. An application to finite

cylinders and spheroids of equal volume and aspect ratio was done in reference 13. In reference 13, the

second-order effect is evaluated and found to be less than 15% for the following target parameters:

m = index of refraction = 1.5,

target volume <= 1 (pm)3 ,a = wavelength of light = 27 (4dm).

-4 A. TF [ORY

A brief outline of the theory nmav he ueful. The outgoing-wave solutiM to the Maxwell's equation is

06, E(r) E0 exp(ikor) +VxVx f d3 r' [(m2 - 1),(4,,c)] U(r') E(r')

0 x exp(kor - r')ir - r'l -(m2  - 1) E(r) (10)

10
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where L'.r) is one inside the target and zero outside the target to allow the integration to

extend over all space. The electric field is next expressed as

Ei(r) = Aij Eeff~j(r) (11)

where A is the polarization matrix for the target. This matrix represents the effect of the polariziation

charge induced within the target by the field, and it \ould he expected to be a function of thc incrinal

space of the target and the field variables. In the limit of long wavelengths, however, this matrx tatkes a

very simple form - a constant diagonal matrix for spheres and infinite cylinders. Since we do not know

w,%-hat A is, we assume a simple form as the basis for an iterative approach. This form is

A = unit matrix, outside the target

aTE 0 0

A= 0 aTE 0 inside the target (12)
Io

0 0 aTM

Here, i = 3 corresponds to the target axis (TE means transverse electric and TM means transverse

' magnetic). The effective field is next expanded in powers of

= (m2 - 1 (4n) (13)

as

Eeff(r) = EO exp(iko r) + Y 3n E(n)ef(r) , (14)

* and this is substituted into equation (10) using equations (11 and (12). Each term in the series can

then be detemined from the previous term starting with

E(0)eff (r) = EO exp(ik o r)

This is the Shifrin approach that \e have generalized for a plane wkave incident on a target from an

arbitrary direction and wxith arbitrary polariztion.The detais of the method along with the first two

orders of iteration are given in references 12 and 13. For example, the first-order term is

M IV



E(1 )_ff(r) = (k2 exp(ikor)/r) u(k o r- ko) x[aTE(Eoxt It + Eoyt it )+ aTM E ozt)], (15)

where x = r x r - x , and the function u is the Fourier transform of the pupil function for the

target:

u(x) f d3 r U(r) exp(i x r'). (16)

The forms of u for finite cylinders and spheroids are given in reference 13.

'SW 4 B. THE AVERAGING PROCEDURE FOR FINITE CYLINDERS AND SPHEROIDS

We now turn to the averaging procedure for cylinders and spheroids, which is actually easier than

for very long cylinders as discussed in section 3. Refering to figure 10, we recall the reference frame

(x. Io Yo I zo) , where the incident direction is zo and x0 is in the scattering plane. The target frame

has z, along the target axis and xt in the plane containing zt and zo (xt yt zt ) .The incident field

makes an angle a with the reference plane and so the components of E0 in the target frame, required

for equation (15) are given by

:': I %cos c

=oy R yt(o) Rzo(y) E0 sifl u

cosocosycosci + cososinysinx
=E - sin y cos c( + cosysinoa (17)

sin ocosycos x + sin o sin y sin x

S The scattered wave is next obtained using the Shifrin series in the target frame of reference, and it must

be transformed by the inverse of the transformation used in equation (17) back to the reference
frame.These components are denoted (Eso , Esyo,Eszo) Finally, a frame x', v', z' is define with z' in

the scattered direction and x', z' in the same plane as xo.zo , and the components of the scattered field

are related to this frame:

EsX' EsXO

Esy Ryo(2 0 o) Esyo (18)
Esz' Eszo

We can now define two intensities:

.



INCIDENT
zo0

SCATTERED

0z

AXIS

-CA

XAY

Figure 10. The geometry for the scattering process. The directionof incidence is z.the direction of
scattering is z', the symmetry axis of the target is ZA, and the incident electric field intensity is E0. The
reference plane is x-z 0. and this plane contains Z. Eo is in the x0- yQ plane and makes an angle a with
the reference plane.( he reference plane is(xo,y 0 ),z~ andtetre rm s(X~AZ)
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(k_2 r2 / Eo2 ) [IEsx'12 + JEsz '12 P ]'

% 0

I =(k o 2 r2 /E 2 ) IEsy (19)

. These represent the intensities for the scattering of an incident beam of light from a target with an

arbitrary orientation. For light incident on a cloud of randomly oriented targets, all possible orientations
must be included. Thus, an average over the orientation variables must be taken

lave = (1/27c) Jdyfdo sin 0 i(y,,) (20)

4 C. APPLICATIONS

Figures 11 through 14 show the averaged intensities i1 and I -) versus Q for the scattering of

linearly polarized light from short cylinders and spheroids.The incident polarization is in the reference

plane, and the respective aspect ratios are 10, 2, 1, and 0.1. The targets have a volume I (tm) 3  This
volume is chosen so that the first order in the iterative method accounts for at least 85% of the

0_ scattering effect as shown in reference 13.

The amplitudes for the sphere are shown as dashed lines, while the amplitudes for the finite cylinder

- are shown as solid lines with dots. The results for spheroids are shown as solid lines with crosses.

The results for a sphere are shown on each graph as a reference.
For the average intensity I, the results for a spheroid and a finite cylinder of the same volume and

Saspect ratio are quite similar except for the minimum point. The long spheroid behaves like a cylinder

while the short spheroid behaves like a sphere. On the other hand, intensities I for the finite cylinder

and spheroid differ markedly for the shorter aspect ratios (the values for the spheroid are zero for the

aspect ratio of one, and they are too small to appear on the graph for the aspect ratio 0.1 .Therefore,

spheroids and finite cylinders of the same material and volume create similar scattering patterns if the

p~ane of linear polarization is not changed by the scattering, if the orientations are random , and if an
average is taken. If the plane of polarization is changed by the scattering, even the averaging process

does not obliterate differences between the two shapes. Reference 6 details the calculations and

results.

5. SCATTERING FROM TARGETS FORMED FROM AN ASSEMBLY OF CIRCULAR DISKS
.In this section we will describe a new model for computing the scattening characteristics of dielectric

objects whose shapes may be quite complex. The model assumptions are: I) the target has a central

axis that may be curved, and the cross section at each point on this axis is circular, and 2) the
wavelength is larger than the target dimension that can produce standing waves. This second

- assumption can be relaxed if a better polarization matrix is used to initiate the calculation as will be

discussed later.This calculational model is then applied to two cases whose scattering characteristics are

• ,.?
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.. . .n frm other computational schenies . Ir,,t a I-nite dielectric c\ Itdcr and, secondl a dilc , i,_

spheroid vk hose scattering charactenstics can be computed exactl I. The" technique i,, then ippLCi

the c-ise of a dielectnc helix. In this application the Circular Intenity Differential Scatterng (.l) ,

computed and the results are compared with the calculations of Bustamcnte et. al. %ho computed CIDS

for a helix made of a string of dipoles. The similarities between the two calculations is striking. A

\econd series of computations involve the scattering of linearly polarized light by a helix. The particle

paum.eters were chosen to match the experimental particle used by Dr. R.T.Wang who measured the!

,caitering, of microwaves by a dielectric helix. Once again the comparison between the calculation and

the experimental results are quite good, thereby lending further credibility to the calculational scheme.

The final application of this section will be a comparison of the scattering of light from a toroid and

oblate spheroid of the same volume and similar radius and height. We study the signatures of these

,hapes for different wavelengths of incident light.

We consider the scattering of light from non-magnetic dielectric targets ,% ith an index of refraction Tm

Maxwell's equations lead to an integral equation for the final-state electrc field satisfying the outgoing

spherical wave boundary condition 1,6,11,,13.

Ei(r) = Einci(r) + a f dV' Dia G(r,r') Ej(r), (21)

, here the integration is over the volume of the dielectric target. The elements of this integral equation

lire

Einc(r) = E0 exp(ik o r) = incident plane wave,

Di, =/ax i a/axi + k 2  , (22)

G G(r,r = exp(i ko  Ir- r'I )/It- r I

a = (m 2 - 1 )!(4rt),

v \khere the incident plane wave is assumed to be harmonic with the time factor expoiwot) and "here
" ko=2 ,

In our previous papers, we used the Shifrin technique w hich take,, as the hasis for an iterative solutloll
:" the replacement

t reiaEk(r')- ... > (Ajk)electrostatic Einc,k(r') (23)

A ith the assumption that the matrix A is constant over the entire volume of the target. This allov,,s the

aa'; atic evaluation of the first-order effect through the use of Fourier transforms. The technique

,ho n to kork well for dielectnc spheres, finite cylinders, and spheroids prmvided the diameter of the

% (

I%



target is smaller than the wavelength of the incident light. For example, for a long dielectric cylinder,

we have
al-E 0 0

(A)electrostatic = aTE 0 (24)

0 0 a-i-M
S-.

with aTE = 2/(m 2 + 1) and aTM= .

However, for more complex target shapes, the replacement (23) cannot be expected to hold as A

should be expected to vary over the target. We are therefore proposing a model that allows for such a

variation while retaining in part the Fourier transform technique If the target has a circular cross section

at every point along its central axis, we can divide the target into disks which are perpendicular to the

axis and of infinitesimal thickness. We then assume that the polarization matrix is constant within each

disk. However, the matrix is permitted to vary from disk to disk. Thus, the integration in equation

Ne, (21) is divided into disks and

Ei(r) = Einci(r) + a f " dV' Dij G(r,r) Ajkl Ek(r') (25)

where the sum is over the disks that compose the target, and the integral is over the Ith disk in which Al

is constant.

An expansion is then based on the replacement

Ajkl Ek(r) ------ Ajk I Einc,k(r') (26)

where Al is a constant matrix tailored to the application as the second model assumption. The

expansion is in powers of a :

E(r) = Einc (r) + Y" a n E( n) (r). (27)

5 A. THE FIRST ORDER CONTRIBUTION.

Putting the expansion (27) into equation (25) gives the first-order term:

Ei 1 )(r) = _ J dV' [Dij G(r,r') ] AJk I Einc,k(r')

II(r) , (28)

where the summation is over the disks. The disk integral I1 can be evaluated hv means of Fourier

transforms if it is first converted to an integral over all space as

0. 30
V. 'a ",P

% 1 , .



Ill(r) = I dV' [Dij G(r,r) ] Ajk I EOk exp(i ko r') U(r'), (29)

where the pupil function U(r') is unity if r' is within the target and zero if r' is outside the target.

Defining the Fourier transforms by

G(r,r) = 1/(2n)3 f d3 p g(p) exp(i p (r - r) ),

Dij G(r,r') = 1/(27t) 3 f d3 p g(p) [ko 2 8ij - pi Pj] exp(i p (r- r') ), and

U(r) = 1/(2n) 3 J d3 q u(q) exp( iq r'), (30)

we evaluate

g(p) = g(p) = 4r/(p2 - k0 2 ), (31)

and

uI(q) = 2n a1
2 dzI J,1 (q al)/(q a,) exp(i q hl ). (32)

Equation (10) is the Fourier transform of the pupil function for a disk of radius a1 and thickness dz1.

The vector q has the component q perpendicular to the axis of the disk, and h is the vector from the

center of the observers coordinate system to the center of the ith disk.

The assumpion that the matrix A1 is constant over the disk allows us to integrate over the r' space

leaving, after application of the convolution theorem

Il(r) = 1/(2n) 3 f d3 p ul(p -k0 )g(p)(ko2 Aikl - Pi Pj AjkI) EOk exp(i p r). (33)

We now make the far-field approximation to complete the integration, choosing the z direction of

p-space to be along the unit vector r - directed from the center of the target to the field point:

'i = 1/(2n) 3 J p2dp f" do jdcos(o ) exp(ipr cos(o )) ul(p - ko) g(p)

(ko
2 Aik - Pi Pj Ajkl) EO,k .

Integration by parts, ignoring terms of order 1/r2 and higher gives

Ii = ko2 {exp(i ko r)/r } ul(ko r - ko) [Aik I- ri rj Ajk I Eo,k , (34)

where r1 , r2 , and r 3 are orthogonal unit vectors with r3 aligned along the axis of the Ith disk

Substitution of equation (34) into the expression for the first-order field, equation (28), gives

31
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E )(r) = 21 f Jds a2 (s) Jl (q (s) a(s))/(q (s) a(s)) exp(i q(s) h(s)

ko2 (Aik(s) - ri rj Ajk(S) ) E0 , )} exp(i ko  r).r. (35)

The vector q is the transfer of momentum during scattering, kor - k . vith the unit vectork

pointing along the direction of incidence. In equation (35) the sum over I has been replaced by an
,.: integration along the main axis of the target, denoted by s. We v. ill see in the appli,:.aion, that the

frame of reference to be used is suited to the Ith disk with the disk-z axis along the axv (,t the disk. In

this frame, A will be assumed constant and diagonal.

-5 B. THE SECOND ORDER CONTRIBUTION.

Returning to the expansion of the final-state electric field, equation (25),the second-order term is

E(2)(r) = Y fdV' [DijG(r,r')] Ajkr Ek ( 1) (r') Ul(r'), (36)

v here E , i, the first-order term within the target:

Ek(1 )(r) Ik r )

= 1/(27[) 3 y I d3 p uI(p - ko ) g(p)

(k° 2 Ak m ' - Pk Pn Anm') Eom exp(ipr') (37)

lnriduction of the Fourier transforms in eqs. (30) allows the inteeration of r-space leaving
( 2) (r) = 1/(27c) 3 y X Jd p Jdp g(P')[ko 2 6 - p

fd p d. .')[o i - p' 1 1'

xu!(p'- p) ul'(p - ko) g(p)

XAIk' [ko 2 Akm' - Pk Pn A, -, . r ,381

" , v:.\ mike- the far-field approximation A hich allovs the cc.:: , ' p .. e ,\ , n teration

C v ei, ri e tern, of the order of '1/r2' the reult r

E i 2 ) 
-

(r )  exp(i k r)/(4-,r) fd d3Q go , C .

xul(p - ko r ) ur(ko r - ko ) Aik

x[Akmi' -rk rn Ann' ] Eo3
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The summations will become integrations over the symmetry axis of the target, and so there is a

- five-fold integration to be performed

6. APPLICATIONS TO TARGETS WITH A LINEAR SYMLMETRY AXIS

6 A. THE FINITE DIELECTRIC CYLINDER

The results of this application without the decomposition into small disks have already been
presented in Refs. 6 and 13 . Although there is no need to divide this target into infinitesimal disks

%,hen the polarization matrix is assumed to be constant within the cylinder (Shiftin approximation), it is

nevertheless instructive to use the cylinder to show how the disk technique works. On the other hand.

this decomposition would be necessary if we wanted to apply the results of reference 13 which

demonstrated that A does indeed vary over the cylinder volume for short cylinders.

The cylinder geometry is shown in Fig. 15. The reference frame (xo,Yo,Zo) is defined with z

along the direction of the incident light, and the X< axis is chosen such that the scattered direction r, lies
in the X0 -Z( plane. The target frame (xtvtz t) is defined with zt along the symmetry axis of the

cylinder, and the X t axis is chosen so that the direction of incidence, z0 lies in the xt-z t plane. If the

polar and azimuthal angles of zt are denoted 0
t and Yt , respectively, the reference and target frames

,% are related as

xt, = To->ti Xo3 j (40)

\,% ith the transformation matrix given by

Cos oI Cos "/t Cos ot sin yt - sin t0

"" To-> t -sin It cos yt 0

sin l cos yt sin 0t sin yt cos Ot  (41)

In the target frame ofreference the polarization matx is both contanit and diagonal:
5r..

.-. aTE 0 0

A 0 aTE 0 (42)

0 0 aTM

F-or a long cvlnder aspect ratio length/diameter > 20), the matrix elements in the long wavelength
limit are gi,.en in equation (4) For shorter cylinders, reference 13 gives values obtained in the

long-,Aavelength limit where the values tor disks nearer the edges differ significantly from those nearer
the center.

% l
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The tir-st order contribUtion1 to the finail -state electric I ieid hajs its components f irst expresv.cd -i

tareet frame to ta1ke ad antase of' the form in equatt11on (22

E(1 (r) = 2nt a2 ko 2 
1 (q a)i(q a) exp(i k0r)Ir

x [aTE(EoX(I it + E~yt it ) + aTM EO~t kt ]transverse

x~fdz exp(i q z) (3

Here, -transverse- denotes that portion 01 the vector transverse to the scattered direction of light:

Xtransverse =X - X r r

Moreover,
q = 0 rko) x kt

q = ko(r - k) kt (44)

where k, is a unit vector along the symmetry axis of the cylinder, a is the radius of the cy-linder, and h

is the height of the cylinder.

The incident wave is assumed to be linearly polarized in this application:

EO= E0 X0 0o + EOZO JO (45)

-' in the reference frame, and E0 makes an angle (x with the xo axis. The components of E0 used in

eqation 43 are in the target frame, thus the transformation (20) is used. Evaluation of the integral in

equation 43 gives the result derived in reference 13:

Ei -)r 2,ta2 h 11(q a)/(q a) exp(' ko r)/r k

taTE(EoxI 't , E0~,0 it) + aTM EO~t kt]

sin(q h/2)/(q h,;2). k146)

As the height of the cylinder increases, the last term will give a significant contribution only when q

0. We show in reference 6 that this c-ives rise to the scattering being restricted to a volumeC near the

surface of a cone whose symmetry axis lies along the cylinder axis and "ho,,e apex half-anclc i\ o,~

The scattenniz angle, het\&een k1(-,and r . is denoted by 20o-

This derivation sho.k,, that the division of the taret into disk,, andi the ',ubsequcnm coherent aidditi: t,

% . % % '~K~



*these effects leads to the same first-order result as that derived for the scattering of light from a

c- lindrical target. We should also emphasize that this new approach is necessary if the polarization

mamx varies along the cylinder axis with cylindrical symmetry as was shown to be the case in the same

reference. A calculation is now performed for a cylinder of volume 4.8 Clam) 3 and aspect ratio 5 for

incident light of wavelength I = 21r microns. The incident light is linearly polarized in the Xo-z o

plane. These conditions insure that the first-order calculation is dominant and accurate as shown in

reference 13.The polarization matrix elements vary over the cylinder along the symmetry axis x as

a-i, = 1 - 0.032 (x - ar/2) 2,

aTE = 0.722 + 0.016 (x - ar/2) 2

w, here ar=5. These equations match the numerical results contained in figure 7 of reference 13 The

intensity 12, is calculated, where both the incident and scattered light are polarized in the xo-Z. plane,
.,and the results are shown here in figure 16.

h B. THE DIELECTRIC SPHEROID

We next turn to an application where an exact calculation is available for comparison 14 We have also
performed this calculation using the Shifrin method since the electrostatic polarization is known. 13 The

disk method is therefore applied to the dielectric spheroid to establish its validity, and the range of

,.alidity of the first-order calculation.

The geometry is the same as used for the finite dielectric cylinder. The first-order calculation is
,inilar to that for the cylinder except that the radius of the disks vary along the symmetry axis. The

firt-order contribution to the final-state electric field is

. E( 1 )(r) = 21tko 2 exp(i ko r)/r

[aTE(Eoxt it + Eoyt Jt) + aTM Eozo kt]transverse

dz a 2 (z) J l (q a(z))/(q a(z)) exp(i q z), (47)

a(z) = a/b [b2 -z 2 ]1/2  (48)

tor both ohlate and prolate spheroids. Here, a is the radius of the ce(ntra! ir,_ular cros ,,section, and h

thc half-height of the spheroid. The polarization matrix elements a1 T.1 and a I, 1 are %cll kirmn in the

-,, , avelength limit and quoted in reference 13 for prolate and ohlate spheroid".

[he ntensites Ill and 12, are defined as
Ill =(k 0 rE 0 )2  EsG 2,=90

%,,'



I •

122 = (korEo) 2 .Esc 2  (49)

where ' is the angle of incident linear poiarization measured %kith respect to the x -z o plane. The

first-order electric field is calculated using equation (27) and compared with the exact results of Asano

and Yamamoto, reference 14, using a spheroid with dielectric constant m = 1.33, volume V = 4.1

,m 3 . and the aspect ratio (height/diameter) 5. The wavelength of the incident light is . =

microns. The result for Ii-) is shown in figure 16 along, with that for the comparable cylinder

discussed above. It is first noted that this result for the spheroid is in excellent agreement ,.ith

referencel4- as it was in reference 13. In reference 13, the Shifrin method as ued to calculate the

first and second order contributions to the final-state electric field. It ", as found that the second -order

contribution is not important for this target size, wavelength, and index of refraction.

More important for the purpose of this report, this calculation shoves that the decomposition of the

target into disks is accurate when the disk radii vary. This allows one to approach applications that

cannot be done by using the Shifrin method, nor any approach other than a brute-force evaluation of the

starting integral equation, equation (25). But even for these, one needs to know the polarization matrix.

One also notes in figure 17 that the cylinder and the spheroid have distinct scattering signatures for0
this choice of scattering parameters.

7. APPLICATION TO DIELECTRIC TARGETS WITH A WANDERING SYMMETRY AXIS

7 A. THE DIELECTRIC HELIX

We now treat an extended target that has locally circular cross sections but whose axis is a helix. The

geometry is complicated by this extension, and three frames of reference are needed to describe the

scattering process. The reference frame (xo , Yo, zo) is as described above. The target frame (xt, Yt, zt)

takes zt along the helical axis. A third frame of reference x0 , y0 , z0 ) called the disk frame is placed

on a disk of infinitesimal thickness with zo through the center of the disk and perpendicular to it. This

geometry is shown in the three parts of figure 17

The axis of the helix is traced by the vector h defined in the target frame as

h(o)= R cos o it + R sin o It + P/(27) 0 kt (50)

Here, R is the radius of the helix, P is the pitch, and 0 is the angular variable that is shown in the

figuresl . The + and - signs define right- and left-handed helicity. respectively. Note that 0 runs from

0 at one end of the helix ( at the origin) to 2tn ( n= number of turns) at the other end.

The vector hO) marks the position of the center of a disk. The disk z axis is along the ditterc' ,r!il

vector

dz =dh/d0 do

= {-R(sinoi t -coso Jt) + P/(2-t) kt } do. (51)
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~Figure 16. The intensity 1212 is shown for a cylinder and prolate spheroid of index m =1.33, aspect
ratio 5 and volume 4.8 4.m. This intensity corresponds to the case when both the incident and the

i scattered light are linearly polarized in the scattering plane. The polarization matrix for the cylinder
~varies as described in the text.
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The magnitude of dzo is independent of 0 and given by
dz = [R2 + (P/2) 2 ]112 do. (52)

The unit vectors for the disk frame are chosen as

k ={-R (sin 0 it - cos jt) + (P/2r) kt }/S,

i = Cos€ it +sin ,jt

j = k x i ={+(P/2t)(coseJt -sine it) -R kt }/S,

S = [R2 + (P/2nt) 2 ]1/2. (53)

The transformation from the reference to the disk frame is achieved through the orthogonal
".

transformation

X = (Tt-> 0 )ij (To -> t )jk Xo,k = (To _> ( )ik Xo,k. (54)

-" The transformation matrix is given in the appendix of reference Note that this transformation is unitary,

-iTO _> 0 To ->
iT

Our model assumes that the polarization matrix A, appearing in equation (1), is constant and diagonal

in the disk frame of reference, with the x0 and yo matrix elements equal due to the cylindrical

symmetry. To take advantage of this assumption, each term in the integrand of equation (15) must be

expressed in the target frame and then transformed to the reference frame. The first-order contribution

to the field is therefore given by:

* Ei( 1)(r) = 2 Texp(ik 0 r)/r ko2 f Sd0 a 2 J 1 (q (0) a)/(q(0) a)

exp(iq(0) h() ) (T 0 _> )ij {[Aj- rj rk Ak] E0 ,l(0) }disk, (55)

- where n is the number of turns in the helix. The transformation matrix Tf _> o is introduced in

equation 54 and specified in the appendix of reference Here, a is the radius of each disk (wire radius)

and q = ko (r - ko), r is a unit vector directed from the origin of the target frame to the field point (the

far-field approximation is used) and k o is a unit vector in the direction of the incident light. Thus, it is

necessary to continuously transform from the disk to the reference frame as the integration over the

helix is performed. Therefore, the scattering effects from the disks that compose the target are added

40
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coherently, their phases being matched by the exponential factor in the integrand of (55). Moreover,
the vector q appearing in the Bessel function is the magnitude of the vector q perpendicular to the lxal

disk axis. We get this quantity by using the transformation of equation (54):

qko sin(2 )
qy = T 0 (56)

qz ko cos(2 0)

where 2 0o is the scattering angle. It follows that

q(0))= [(qio )2 +(qjo )2 ]1/2

= {(cos 0 qxt + sin 0 qyt )2 +

-" (-R qzt + (P/2n)(cos 0 qyt - sin ) qxt )2 /S2 }1/2 (57)

The phase term in equation (35) has the exponent

q h = Rcos 0 qx +Rsin qy + (P/2t)4)qz (58)

The last factor in equation (35) contains the components of the incident field in the disk frame;

therefore, the incident electric field, normal to ko , must be transformed as

Eox0 Eox

E0o= To -> 0 0 (59)
EOZO 0

7 B. CALCULATION OF THE CIDS FOR THE DIELECTRIC HELIX

!1 The scattering of light from very thin helical targets has been discussed by various authors 15- 18

where the helix is treated essentially as a line of dipoles set on the helical axis. Singham. Patterson,

and Salzman, reference 19, have also considered light scattering from chiral objects , including the

helix, using a model that descibes the three-dimensional body as a collection of spherical or ellipsoidal

dipoles. The quantity of special interest in these papers is called the circular intensity differential

,! scattering parameter (CIDS) defined as

. CIDS = (L - IR) (IL + IR) (60)

Here IL is the scattering intensity for left-circularly polarized light

o 4
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E0 = E0 (i0 t io)

vith the upper and lower signs corresponding to right and left circularly polarized light, respectively

(with the time factor iot ). In the series of papers by Bustamante and others, refs. 16-18 , the CIDS

parameter is evaluated for very thin wires for which, in our notation, aTE = 0 and aTM = 1. In

reference 16, a series of calculations is performed for a helix with n= 20, R= 1,1m , p = 1 l.m, and for

,wavelengths from 1 4m to 4p.m. The spiral axis is located at

t= 9
0 and 7t-90

We have calculated the CIDS ratio for the helix described above for the wavelengths 1,2, 4, and 6

p.m. It should be emphasized that our model is different than that of Bustamante. Our helices have

thickness and are dielectrics of refractive index 1.5. The polarization matrix is diagonal and of the form

of equation (22) with aTE = 2/r2 + 1) and aTM = I in each disk frame of reference. In general, we

find that our results give about the same signatures as those of Bustamante et al., that is the number.

size, and placement of the lobes are about the same as found by them. However, we do not get their
large back. ittering lobes. Figure 18 is a polar plot of the CIDS ratio, \Ahere I 1 .m. Figure 19 is

similar b .th I = 2Lm. In figure 20, wxe attempt to match the Bustamante calculation by taking

rn=50 A ,ich makes aT small ( note that the radius is correspondingly small so that the condition

_,ram,, < is satisfied). After doinz this we get a large backscatiering lobe. figure 21 is a CIDS plot

for 1 = 4 pim. m=l.5 , and only one prominant lobe is present, and again this is consistent with

reference 16. Figure 22 is calculated as in figure. 6 but with I = 4 pm , and a backscattenng lobe

again appears. Figure 23 is a CIDS plot for a wavelength I = 6 p.m. Here there is one very wide lobe

with a large backscatterng contribuion even though the calculation is for a thin dielectric.
It ,hould he pointed out that o - results for a thin dielectric differ from the results of reference 16 even

v, hen the radius of the wire is • to be very thin, a = 0.00(1 pm. and, in fact, CIDS does not change

sinificantlv for radii from th , to about 0. 1 p.m. Thus. a thin dielectric \wkire is not the same as a

train of dipoles placed along t al axis . Any fnrC thickness seem, to make a difference, especiall,

n the hack scattering range. I sulIt seems to hc ho inne out h,, the work of reference IlX , where it is

found that triaxial polarizahili (which are reiucd to differin diagonal matrix elements of the

polarization matrix) significantl. affect the scattcring result. anu therefore have to be included to

* iialitativelv de,,cnhe the scattering matrix. The model ot reference . though not treating the target as
,neing ,i c ntin uou s hody as does our model, is neverthees s three dir:,, onal and thus closer to our

reatment than the one dimensional model of reference 16.

cOne fina I calculation is made, based on an electrnm mnc rocraph of Sp r: nut membranes presented in

10 r en The,,e rcsearchers use the olctring parm'.' , !- h i o 200

-7.. prich n _. rn. radius helix : -0i n. ,int ( rr>, )ur c t a

_0~ .. , p l'x, cl r c )



~ 6-42 a.,- -7C

Figure 18.The CIDS parameter defined in equation 60. The target is a dielectric helix of index of
*" refraction m = 1.5. The helix is formed from a thin cylinder of radius a = 0.01 p.m. The helical radius is

R = I p.m, the pitch is P = I p.m, and the helix is right handed with 20 turns. The wavelength of the
incident light is I p.m. The polarization matrix is assumed to be diagonal ip the frame of reference of
each disk, and the values of its elements within each disk are aTE = 2/(m+l) and aTM 1. These
values are the same as for an infinite dielectric cylinder in an electrostatic field.

N

i: _240 10 0

,--'%Figure 19. The CIDS parameter for the sanie helix and the same polarization mnatrix as in figure 18. Tlhe
' e. incident light has the wavelength 2pni.
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u,,.

'500

'"Figure 20. The CIDS parameter for the same helil aS III figu.re 18, and the wavelength of the incident
,',.: light is again 2 pam. However, to simulae I heli, con truced of an nfintely thin wire with aTE =0, wetake m 50 and the radius a 0.001.
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40 0 - 3- -,5 -

Figure 21. The CIDS parameter for the sanid helix as in figure 18. 1 he wavelength of light is 4 pm,
and the polarization matrix elements for each disk are the same as described in figure 18.

-I

2.1

U.2,.
* 'uO. 05-0,1-Q - -2-QI-4-,,.2.3.4-05

b"-

Figure 22. The CIDS parameter for the swc helix a1d incidCIt li as in figure 21, but modified as in
figure 20.
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Igo 10 0 .1 -- I -0 -0 -0~ a 0

Figure 23. The CID S paramieter for thte san elII X aS In figur11e 18. The wavelength of the incident light
is 6 4m, and the polarization matrix elemnicts for each disk are as described in figure 18.

120604-Z- -2---6

IS

180 0 6 - 0 4 -0 2- 0 2 - 4 06

Figure 24. The CIDS parameter for a biologically- modelled helix. The index of refraction is taken to be
m = 1.33. This helix has 6 turns, and its size parameter and wavelength of the incident light are given in
the text. The polarization matrix for each disk is as described in figure 18.
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refraction ot 1 .33. Ind our results are sh i in ti cuire 24. The result,, ot rete: cu.i

application show two lobes with aIlmost the sae aliluml for the ('1 lS jIirime:,.

our results indicate a thinner lobe with the samne maximum value occuring at aboutLI lhK 'A111e

angle of 80.

7 C. DIELECTRIC TOROID.

The helix reduces to a toroid when the p itch p =() Therefore, the evaluation (i 6i. .

proceeds, as for the helix. [or a dielectric toroid Aith volume V . ill- . the n: st I-

cal,:L;ated for two w avelencths. , 7 pim 111d 27 pilm. This tarcet site inrlles thatI :he 1_1rst

contribution Is iccurate by virtue Of our work in reference 1 3.

The scattering, intensity I-22 IS calculated anld com0npLred to an oblate spheroid of the "'ame

aspect raitio 1 5., The index of refraction of both targets is Inm 1.33. and the toroid ha'. a= .5

R = I 9) .mr. The oblate spheroid has a radius 1.7() pnm and a height 0.7 16 4~m. Again. etch ,hipe 6,ts

the same \ olume. The results are shown in fizures 25 aind 26. Figure 2;S showAs ( Wt,' di

signatures for the twAo Shapes w hen the w avelength is, 7, 4m, ihe toroid alone has a nimum .it .inlat a

scattering angle of 4(0 degrees. and the backscattenng intensity for the toroid is appreciably larger thani

for the spheroid (note that this is a log plot. so the difference in backscattering intensities, is, almlost twAo

orders Of man ue.In fi cii rc 26. wAith . 2,7 pm. thes e differenices are nearlyv elin I ated -: heC

o lv real di ffe rence betweenl the patterns helinc the ceiniral mi iii mra occ Uri n at .htlvifcrn

S. SCATTERING OF LIGHT FROM A DIELEICTfRIC' H ELIX - EXPERIMENT

Experimental studies of scattering by a single -,article are very difficlt to perforii in the opti:al

region, especially when the particle size is comparable to the avtelength of the Incident radiation.

The considerable advantages of using the microw av~e anallog technique in simu1.lating" sigl dprticleC

, '.atterinu have been descrihed elsewhere.~ IWe select here some recent anllar distriut1in

rlmeasurement results for at dielectric helix emiploy ing this tchInue.

Art nz ht aded. 7-turn helix of 3.66 cm outer diamecter and of 4.35 cm axial len eth NAw as tmied ha m

a 4,vN cm diameter plex Ila ss cylinder, a commercialI \ aailable acr-, Iic rod. The complex dietic

c'on stanlt of this pLasi CMaterial wk a'[I's separatel v minc rd hy a Classi cal stanld in kwave techique'ic

w ae iiide- h tcdl tefrom which the compIc \ refra-lctive inldex wAas ton nd to be in = 1 ( ti20- ().W) 21

at the operating microwiave wk avelength IS3.1 cm.

The MInicrO)waye- uniqLie compensation (or nutll technique was employed in both ex ti ntion (20o (

and in aii I uar scatted nizg (1 (W - 200 < 17(0 miens itv measurements, and from th, tormier. one can

a1ls)o deduc:e the scattering inten'.itv InI the beaml direCL1i.'n 20o ( Presently, the null teChnliqueI I" the

nlv reliable method with which one can dicrmiat tirue scatered wa~ve gantthe sierm e

',C1 L,)rWA .tu 1d coiherent tk radraiationi. ivnnitiem be cornparable to ore~enii: ll~e:~
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larger than the former.

,? A brief explanation of measurement procedures using this technique is needed. In the absence of the

*,- target in the beam, one cancels the unwanted background at the output port of a mixer by properly

adjusting both the amplitude and the phase of a reference wave \xhich is piped through a separate

waveguide from the microwave source to an input port of the mixer, wAhile the backround wave via

free space is being fed to the other mixer input port. As the target is hoisted into the beam, the

off-balance appearing in the mixer port is directly proportional to the true scattered v ae. The target i,

thereby allowed to go through a preselected sequence of orientations in the beam, and the

orientation-dependent data are recorded. Immediately after the run, the target is replaced by a standard

target of known scattering magnitudes, and the measured scattering of this standard provides the

absolute magnitude calibration of the entire run.Therefore, it follows that the accuracy of the scattering

experiment hinges mo,,t critically on the stability of cancellation, i.e.. on howk long the initially

established null condition is maintained. Any disturbance affecting the initial cancellation will apperar

as drift or noise in the detected signal, which is virtually impossible to correct after the measurement is

made. It also follo s that the measurement accuracy degrades as the scattered signal level becomes

lower in comparison to the drifting background or reference wave.

The measured scattering intensities (in absolute magnitude) are denoted I1 1 and 122 . The intensity

I is the case . hen both the receiving and transmitting antennas are polarized vertically. I,-, is for

n ,oth antennnas polarized horizontally The horizontal scattering plane corresponds to the x0 -zo plane in

ti-Lure 2. Inspection of the experimental profiles Ill and I-,-) (figures 28,29,30 versus the scattering

angle 20o immediately shows that the scattering by the helical structure is hightly sensitive to the

orientation of the helix in the beam- and also that the intensity may vary as much as four orders of

magnitude ( figure 28) as the scattering angle changes. Because oft the rather small size of the helix

,,,mpared to the large antenna-target separations ( l0.8 m between the transmitter and target 5.2 m

het, ecn receiver and target ), and hence the low scattered signal levels, significant measurement errors
,.._,t, exist due to the afore-mentioned compensation stability. Roughly estimated, the cumulat

T ax1um crrrs w, ould he about 5% if the absolute magnitudes ot 1 11 and I-- are larger than 10 1, up

*,, Ippro,\mate lv 2( - for those between 1()0 and I()I and may amount to as much as 10() for those

.2,in~tudl-' hav ingp less than 1( - 1 Also. the system g.ain changes during the Iengthy measurement runs

ma, have contributed additional absolute-magnitude-calibration errors. Roughly estimated, the

C' .:ullttve maximum errors would be about 5%7'r if the absolute magnitudes of 1ll and 1,-, are larger

than I)1 up to .pproxiTlatelv 20 % for those between 1) and 101. and may amount to as much as

%,'+" if)()'}"+; for thos-e abl,)ute -a gnitudes having less than l(

C(1 ()\.ARIY)N OF THEORY AND EXPERIMENT

I Kc .er: e ,,t r 's; remncnt s on the scattering of rnicrx ayes from a dielec: spiral target hase NeenO.
2: ....,] . decr, d a',,.e, and theoretical calculations are omptred ,.,ith the intensities I1 1  and

: %,(',,

,*,- -"+,- - .", . "  ',+ ' . . " •. • .+." ,."," , ,.,: ,"" ','- . .s + ',j. ',z j ' '  "+ " " " " " " ' "." ,." ". . .. ",, .,' . .+

w +*'p/ ,r J• •
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! 1 %0' : t\ ine platec ot 'polarizaitiaI N 110 no:]taned h% til ct~r

hie o!t~ nat:nt tor ? 1: heli 1 ued :1 the c vxecis ::c C e 1 .: "I!,

H.erlIttthOd t'Or Iacltn cttrninesti.lhe acttNcta.i2.:? .*-

dlrectionN of Initial an ia Inerplrzto r perpenl ilar to) the >aeiep~c.:~

hc dirctions of linear piolarization are In the scattenrin, Iplane the Nc,'Ittcrine plane iv

Ot..>. .. oficdence aInd scatteri n , - the \1 ln f""

Fhe experimental reaE or III~) -110.o,(l are ho\nin t--arcN if-,,rN.:

.:d - 1 o).fl are 0h knl InI fil-are-s 21) and the reNUlIt for I ~ 019 t p lW). *u

e:-eN, 3C. lere. for example I I1( oorcpndto the lici\ .a.

I Note thatt the \vAl ies nlever drop1 to heloI( . even1 thonch'l the thc( r% preditet ain

N~a1c.We ac:coL1nt for this by, noting that the real target is niot pertcl\ Imaped. and en c %''

'n:-2 map ioduacd hy anI ideal spiral vWLI o rdiot he exp~ected. N lorecv. the nim e e

:ecx perime at prohibits meanin Ie-taL1 IImCa1,Lnr1ecntS three orders of ae i d he'O% Iai tt\a.

The >N a~nof the minimai are of greate,,t importanc e as these irc prod :iced hy the Nfl i ::

And'ae am riZed these mnafor the experiments from f TIi-Cars 28 a Se )Ct %k C can a'i

122("0) S50', 75-, 100?, 140?;

111(0,0) 40 - 70?- 135?

122(90,0). 500, 70--- 90-, 150-

111(90.0) . 50-, 70--, 105-, 140-

aWnd tor t 0 ce.i as

1 i(90,90) - 45 1 115?:

22(90,90). 55?, 907', 125?

-. nroeh . ontai'n the intensi ties (d)(L I2 L l 1.1* ~~

ad I~ 0 ).0 LInd the compari son of the theory atnd experiment. Thecxetendf t:c

I o)i d diaimonds, 'a hile the theoretic:al resul ts are plotted as a lineC.

The~omarlonhct'a cen theory. and experiment is evident from the t 1 itte i ah

rewi re normailized 'a ith the experiment at the smnallet Ncatteri c anel 1 V'c cnN*l '

~N Y'f.I~~ina-, toil':

Rcilm ,na o- )cd aureement het'a ceIi theor-N and eXperimnnt fo(r t, F' ad \lK v :: ..

E r'a ~r I to hac:k -. catterinti ratios arc patc larly v 'elI est hi he KL t o:'

I 111 (I ~ 01);.)) and 129.1)

( )dU a1.ee~e het\~etil theoretica and expeimenCtal1 I'L;e: t' tl I

e)-the in1t N' iftter;;: for III ((),() and I1 ~ ~ i at ' N.

T !t ( - Ic o 1 .!

I .'* .'aic h~~ thel m'ia and e en el \ aU

%*ii: In %citl cecnet'IN ~
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since the experimental values have large uncertainties for such small intensities as described above.

(3) The positions of most of the experimental minima generally agree well with the theory.

One concludes that the theory presented here explains the general features of the spiral experiment

Since the theory can be applied to a wide range of particle shapes, this technique provides a method by

which such target shapes can be studied without resorting to time- consuming numerical procedures.
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